兰州大学核物理与核天体物理课题组LOGO

内页大图
科研方向
当前位置 > 首页 > 科研方向
牛一斐教授团队研究方向
2021-04-23 来源: 浏览:0

牛一斐教授团队的研究方向主要有:

一、原子核理论:

a)零温和有限温的密度泛函理论(包括协变密度泛函理论和Skyrme密度泛函理论)

发展了有限温度相对论平均场模型、有限温度相对论+BCS模型(球形、四极形变、八极形变)、有限温度相对论Hartree-Bogoliubov模型

1. Pairing transitions in finite-temperature relativistic Hartree-Bogoliubov theory, Y. F. Niu, Z. M. Niu, N. Paar, D. Vretenar, G. H. Wang, J. S. Bai, and J. Meng, Phys. Rev. C 88, 034308 (2013)

2. Critical temperature for shape transition in hot nuclei within covariant density functional theory, W. Zhang, Y. F. Niu, Phys. Rev. C 97, 054302 (2018)

发展了零温和有限温度相对论无规相位近似模型、有限温度Skyrme准粒子无规相位近似模型

3. Nuclear charge-exchange excitations based on a relativistic density-dependent point-coupling model, D. Vale, Y. F. Niu, N. Paar, Phys. Rev. C 103, 064307 (2021)

4. Stellar electron-capture rates based on finite-temperature relativistic quasiparticle random-phase approximation, A. Ravlic, E. Yuksel, Y. F. Niu, G. Colo, E. Khan and N. Paar, Phys. Rev. C 102, 065804 (2020)

5. Multipole excitations in hot nuclei within the finite temperature quasiparticle random phase approximation framework, E. Yuksel, G. Colo, E. Khan, Y. F. Niu, and K. Bozkurt, Phys. Rev. C 96, 024303 (2017)

6. Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations, Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, and J. Meng, Phys. Rev. C 95, 044301 (2017)

b)量子多体理论:

发展了基于Skyrme密度泛函的包含粒子振动耦合的无规相位近似模型

1. Gamow-Teller response within Skyrme random-phase approximation plus particle-vibration coupling,Y. F. Niu, G. Colò, M. Brenna, P. F. Bortignon, and J. Meng,Phys. Rev. C 85, 034314 (2012)

发展了基于Skyrme密度泛函的包含准粒子振动耦合的准粒子无规相位近似模型

2. Quasiparticle random-phase approximation with quasiparticle-vibration coupling: Application to the Gamow-Teller response of the superfluid nucleus 120Sn, Y. F. Niu, G. Co, E. Vigezzi, C. L. Bai, and H. Sagawa, Phys. Rev. C 94, 064328 (2016)

c)从头计算探索:用泛函重整化群方法得出系统密度泛函(零维情形)

1. Functional renormalization group and Kohn–Sham scheme in density functional theory, H. Z. Liang, Y. F. Niu, T. Hatsuda, Phys. Lett. B 779, 436 (2018)


 二、原子核结构:

a)原子核的质量:利用径向基函数方法改进原子核质量精度描述和预言

1. Mass predictions of the relativistic mean-field model with the radial basis function approach, J. S. Zheng, N. Y. Wang, Z. Y. Wang, Z. M. Niu, Y. F. Niu, and B. Sun, Phys. Rev. C 90, 014303 (2014)

b)原子核温度相变:研究热原子核的超流相变和形状相变

1. Critical temperature for shape transition in hot nuclei within covariant density functional theory, W. Zhang, Y. F. Niu, Phys. Rev. C 97, 054302 (2018)

c)原子核的集体振动激发:研究零温和有限温度下原子核的巨共振、矮共振、Gamow-Teller共振、同位旋相似态等,集体振动的γ衰变,巨共振的展宽机制

1. Isoscalar and isovector splitting of pygmy dipole structure, N. Paar, Y. F. Niu, D. Vretenar, and J. Meng, Phys. Rev. Lett. 103, 032502 (2009)

2. Low-energy monopole and dipole response in nuclei at finite temperature, Y. F. Niu, N. Paar, D. Vretenar, and J. Meng, Phys. Lett. B 681, 315 (2009)

3. Learning about the structure of giant resonances from their γ decay, W. L. Lv, Y. F. Niu, and G. Colò, Phys. Rev. C 103, 064321 (2021)

4. Gamow-Teller excitations at finite temperature: Competition between pairing and temperature effects, E. Yuksel, N. Paar, G. Colò, E. Khan and Y. F. Niu, Phys. Rev. C 101, 044305 (2020)

5. Gamow-Teller response and its spreading mechanism in doubly magic nuclei, Y. F. Niu, G. Col`o, and E. Vigezzi, Phys. Rev. C 90, 054328 (2014)

 d)原子核的弱相互作用过程:研究原子核的β衰变、中微子原子核反应以及天体环境中的电子俘获、无中微子双贝塔衰变

1. Particle-vibration coupling effect on the β-decay of magic nuclei, Y. F. Niu, Z. M. Niu, G. Colò, and E. Vigezzi, Phys. Rev. Lett. 114, 142501 (2015)

2. Interplay of quasiparticle-vibration coupling and pairing correlations on β-decay half-lives, Y. F. Niu, Z. M. Niu, G. Colò, E. Vigezzi, Phys. Lett. B 780, 325 (2018)

3. Stellar electron-capture rates based on finite-temperature relativistic quasiparticle random-phase approximation, A. Ravlic, E. Yuksel, Y. F. Niu, G. Colo, E. Khan and N. Paar, Phys. Rev. C 102, 065804 (2020)

4. Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation, Y. F. Niu, N. Paar, D. Vretenar, and J. Meng, Phys. Rev. C 83, 045807 (2011)

 

三、核天体物理

a)快中子俘获过程:为r-过程提供核物理输入量,利用网络方程模拟快中子俘获过程

1. Particle-vibration coupling effect on the β-decay of magic nuclei, Y. F. Niu, Z. M. Niu, G. Colò, and E. Vigezzi, Phys. Rev. Lett. 114, 142501 (2015)

2. Interplay of quasiparticle-vibration coupling and pairing correlations on β-decay half-lives, Y. F. Niu, Z. M. Niu, G. Colò, E. Vigezzi, Phys. Lett. B 780, 325 (2018)

b)超新星爆发:为超新星爆发模拟提供电子俘获率

1. Stellar electron-capture rates based on finite-temperature relativistic quasiparticle random-phase approximation, A. Ravlic, E. Yuksel, Y. F. Niu, G. Colo, E. Khan and N. Paar, Phys. Rev. C 102, 065804 (2020)

2. Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation, Y. F. Niu, N. Paar, D. Vretenar, and J. Meng, Phys. Rev. C 83, 045807 (2011)

c)中子星:核物质状态方程

1. Electric dipole polarizability in neutron-rich Sn isotopes as a probe of nuclear isovector properties, Z. Z. Li, Y. F. Niu, and W. H. Long, Phys. Rev. C 103, 064301 (2021)


 四、机器学习:

a)采用多任务神经网络学习巨偶极共振的关键参数

1. The description of giant dipole resonance key parameters with multitask neural networks, J. H. Bai, Z. M. Niu, B. Y. Sun, Y. F. Niu, Phys. Lett. B 815, 136147 (2021)

2. Comparative study of radial basis function and Bayesian neural network approaches in nuclear mass predictions, Z. M. Niu, J. Y. Fang and Y. F. Niu, Phys. Rev. C 100, 054311 (2019)

3. Predictions of nuclear beta-decay half-lives with machine learning and their impact on r-process nucleosynthesis, Z. M. Niu, H. Z. Liang, B. H. Sun, W. H. Long, and Y. F. Niu, Phys. Rev. C 99, 064307 (2019)


牛_all_1011.png



地址:甘肃省兰州市城关区定西路266号旁
电话:0931-8912100 18794778654
Copyrights © 兰州大学核物理与核天体物理课题组 版权所有 陇ICP备10000336号-3 宏点网络